Science Summer

I Illinois Computer
Teaching Workshop

Revisiting the D Programming Language

My 2* Programming Language

Web: mshah.io 15 minutes | Audience: For All!

@ Youlube www.youtube.com/c/MikeShah 11:00 - 11:15 Central Time Tues,June 3rd, 2025
Social: mikeshah.bsky.social

Courses: courses.mshah.io
Talks: http://tinyurl.com/mike-talks

http://mshah.io
http://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

Abstract (Which you already read :))

Talk Abstract: The D programming language (dlang) is a systems programming
language created by Walter Bright and released in 2001. D has continued to evolve
during its near 25 year history, and in this talk | will re-introduce the D programming
language, as someone who has now decided to do significant amount of teaching
with the language. Why | made the decision to choose this language has to do with
its ability to scale through the curriculum. The results of my decision have
surprised even myself with the success! In this talk, I'll discuss what courses |
experimented with, training TA's to use the language, the student outcomes, how
students responded, and my thoughts going forward. Audience members will leave
this talk with lessons about changing the programming language, and hopefully
with courage to make choices that best benefit student outcomes.

Your Tour Guide for Today

Mike Shah

Current Role: Teaching Faculty at Yale

University

o Teach/Research: computer systems, graphics, geometry,
game engine development, and software engineering.

Available for:
o Contract work in Gaming/Graphics Domains
= e.g.tool building, plugins, code review
o Technical training (virtual or onsite) in
Modern C++, D, and topics in Performance or
Graphics APIs
Fun:
o Guitar, running/weights, traveling, video
games, and cooking are fun to talk to me
about!

Web
www.mshah.io

© YouTube

https://www.voutube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io

Conference Talks
http://tinyurl.com/mike-talks

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

e Note:
o Slides will be available for this talk on
my website: www.mshah.io
o Just google “Mike Shah Yale” and you’ll
find them under “Talks”

http://www.mshah.io

Question to Audience

Has anyone heard this wisdom before?

e “The only reason to switch
programming languages, is if it gives
you 10x across a dimension
[performance/safety/productivity]”
paraphrased

Has anyone heard this wisdom before?

e “The only reason to switch programming languages, is if it gives
you 10x across a dimension [performance/safety/productivity]”
- paraphrased

e Ithought I'd share with this crowd, that this wisdom makes me
laugh &

o (Sometimes even roll on the floor laughing 2 2 2 42)

Why am I am laughing @ (and dispelling this myth)

e We are computer scientists after all -- there’s lots of reasons to
choose languages, and we don’t need a 10x revolution

e If we can get a 2x across one dimension (with most all things being
equal), that may be good enough!

Why am I am laughing @ (and dispelling bad wisdom)

e If we can get a 2x across one dimension (with most all things being
equal), that may be good enough!

2X easier to write

2x faster code generated

2x safer code

2X better tooling

2X community

2xX more fun

2X more ... etc.

Why am I am laughing @ (and dispelling bad wisdom)

e Maybe the numbers look something like this in practice

5X easier to write

1.1x faster code generated
4x safer code

0.5X better tooling

1X community

10x more (perceived) fun
2X more ... etc.

10

Exponential Function Reminder:

It’s actually not that hard to get an exponential improvement (and
hit that ‘10x’ mark or more) when you choose the right language for
yourself on a project or industry project
So if you can hit a few of these dimensions (

) while
most other variables are the same -- why not try something that can
give you a competitive advantage?

11

D

Who here has heard of D Language?

Lesson - A First Impression

Let’s take a look at an

example of D code
o TI’ll give everyone a
minute to think about or
guess what this program
does

So... what does this
program do?

Pop Quiz: (’examen surprise!) (1/3)

void main()

{
import std.algorithm, std.stdio;
"Starting program".writeln;

enum a = [3, 1, 2, 4, 0 1;

static immutable b = sort(a);

pragma(msg, "Finished compilation:

", b);

14

Pop Quiz: (I’examen surprise!) (2/2)

e Line3: Sort an Array at Compile-Time v your code here
o There’s a built-in standard
library (named ‘Phobos’) void main()
o There’s a module system . {

import std.algorithm, std.stdio;
"Starting program".writeln;
enum a = [3, 1, 2, 4, 0];

static immutable b = sort(a);

pragma(msg, "Finished compilation: ", b);

One of the first examples on the www.dlang.org
webpage - sorting an array -- at compile-time!

15

http://www.dlang.org

Pop Quiz: (I’examen surprise!) (2/2)

e Line3: Sort an Array at Compile-Time v your code here
o There’s a built-in standard
library (named ‘Phobos’) void main()
, {
.o LINENES B AR TS SEEm . import std.algorithm, std.stdio;
e Lineb:
o Function call using uniform "Starting program".writeln;

function call syntax (UFCS) enuna =103, 1,2, 4, 01:

static immutable b = sort(a);

pragma(msg, "Finished compilation: ", b);

One of the first examples on the www.dlang.org
webpage - sorting an array -- at compile-time!

16

http://www.dlang.org

Pop Quiz: (I’examen surprise!) (2/2)

e Line3: Sort an Array at Compile-Time v your code here
o There’s a built-in standard
library (named ‘Phobos’) void main()
) {
.o LINENES B AR TS SEEm . import std.algorithm, std.stdio;
e Lineb:
o Function call using uniform "Starting program".writeln;
. function call syntax (UFCS) enum a = [3, 1, 2. 4, 0 1;
e Line7:
o enum constant, evaluated at static immutable b = sort(a);

compile-time

pragma(msg, "Finished compilation: ", b);

One of the first examples on the www.dlang.org
webpage - sorting an array -- at compile-time!

17

http://www.dlang.org

Pop Quiz: (I’examen surprise!) (2/2)

e Line3: Sort an Array at Compile-Time v your code here
o There’s a built-in standard
library (named ‘Phobos’) void main()
, {
.o LINENES B AR TS SEEm . import std.algorithm, std.stdio;
e Lineb:
o Function call using uniform "Starting program".writeln;
. function call syntax (UFCS) enum a = [3, 1,2 4 01
e Line7:
o enum constant, evaluated at static immutable b = sort(a);
compile-time
° Line 9: pragma(msg, "Finished compilation: ", b);
o immutable static data stored }
in binary

One of the first examples on the www.dlang.org
webpage - sorting an array -- at compile-time!

18

http://www.dlang.org

Pop Quiz: (I’examen surprise!) (2/2)

e Line3: Sort an Array at Compile-Time v your code here
o There’s a built-in standard
library (named ‘Phobos’) void main()
.o LINENES B AR TS SEEm . { import std.algorithm, std.stdio;
e Lineb:
o Function call using uniform "Starting program".writeln;
. function call syntax (UFCS) enuna =103, 1,2 4,01:
e Line7:
o enum constant, evaluated at static immutable b = sort(a);
compile-time
° Line 9: pragma(msg, "Finished compilation: ", b);
o immutable static data stored }
in binary
e Line12:
o pragma outputs value after .
compilation (before runtime) One of the first examples on the www.dlang.org

webpage - sorting an array -- at compile-time!

19

http://www.dlang.org

Pop Quiz: (I’examen surprise!) (2/2)

° Line 7:

O

O

This is a fixed-size array.
We can slice into it
m e.g.

Sort an Array at Compile-Time v

your code here

void main()

{
m a[0..2]returns[3,1,2] import std.algorithm, std.stdio;
o Arrays (whether dynamic or . '
static) know their ‘length’ s RAFRINg JERBTAN Ml Eeilng
and store the ‘ptr’ together. enum a =[[3, 1, 2, 4, 0];
static immutable b = sort(a);
pragma(msg, "Finished compilation: ", b);
}

One of the first examples on the www.dlang.org
webpage - sorting an array -- at compile-time!

20

http://www.dlang.org

Compile-time code is runtime code

Why you might care to
look?

It's true. There are no hurdles to jump over to get things running at compile

time in D. Any compile-time function is also a runtime function and can be
D tries to execute as executed in either context. However, not all runtime functions qualify for

much as possib|e at CTFE (Compile-Time Function Evaluation).

compile-time
The fundamental requirements for CTFE eligibility are that a function must
o Andthe

) be portable, free of side effects, contain no inline assembly, and the source
COde' . 'JUSt IOOkS code must be available. Beyond that, the only thing deciding whether a
like regular code! function is evaluated during compilation vs. at run time is the context in

Compile-time execution FESEIE:!
saves the user time at
run-time -- big win!

The CTFE Documentation includes the following statement:

https://dlang.ora/bloa/2017/06/05/compile-time-s
ort-in-d/

. https://tour.dlang.org/tour/en/gems/compile-time
-function-evaluation-ctfe

In order to be executed at compile time, the function must appear in a
context where it must be so executed...

http://www.dlang.org
https://dlang.org/blog/2017/06/05/compile-time-sort-in-d/
https://dlang.org/blog/2017/06/05/compile-time-sort-in-d/
https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe
https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe
http://www.dlang.org

Lesson - D Language History

Note: | will refer to D or DLang to mean any version of D version 2.X.X or later

22

D Language Creator - Walter Bright [

Famously created the Zortech C++ compiler
o Also a known game designer creating Empire

e Created a C Compiler (Datalight C compiler)

e Between 1999-2006 worked alone on D
version 1 (i.e. D1) programming language.

e Around 2006 or 2007 D2 would start being
developed with Andrei Alexandrescu and

others.

o Full history here - Origins of the D Programming
Language

m https://dl.acm.org/doi/pdf/10.1145/3386323

—

~

nnnnn

DLang
Walter Bright [Episode 100

creator ofithe D llanguage

My full interview with Walter Bright
https://www.youtube.com/watch?v=08WEykJ ra(%3

https://en.wikipedia.org/wiki/Walter_Bright
https://www.classicempire.com/
https://dl.acm.org/doi/pdf/10.1145/3386323
https://www.youtube.com/watch?v=O8WEykJraQc

D programming language

DLang @

Paradigm Multi-paradigm: functional,
imperative, object-oriented

Designed by Walter Bright, Andrei

e DLang has also been evolving and growing since it Nexancrescs (snce 2007)
was first created in 2001 [wiki] et empersd 8 iifﬁ}?:ﬁf:w
e Revisiting D has helped me improve my code in e et
other other C style languages -- but now I et i e
primarily use the D language. (:S vaii: e
e I hope if you find the same joy as I do, whatever Flename .

extensions

language you end up using, youw’ll end up improving | wese amcose

Major implementations

your programming and software engineering sKkills. | owoe getersnce mpemertaion, cco,

GDCZ,

e Today, I want to sell you on trying P
-- revisiting a language that has evolved |00 5. e
for nearly 25 yearS! Genie, MiniD ()I::;u:\:;([’w] Vala, C++11

C++14, C++17, C++20, Go, C#, and others.

4 D Programming at Wikibooks

https://en.wikipedia.org/wiki/D_(programming_language)

Sales Pitch 1 - Safety

The right defaults for safety

e Here are a few examples of the ‘right’ defaults in D I really like:
o Variables are default initialized

o Arrays store ‘ptr’ and ‘length’ which means...(see point below)
o Arrays bounds can be checked by default

o Memory safety by default (with garbage collector)

o const is transitive -- as well as immutable (i.e. a stronger const)
o Thread local data enabling more concurrent code

o Casts -- almost always explicit done -- fewer surprises!
o ‘structs’ are value types, and ‘classes’ are reference types

o Other safety features
m Annotations (e.g. @safe, @trusted, @system) means a path for safe code!

o ABI compatible with C o

Memory - D is a systems language (1/3)

e D has a garbage collector (gc) | std.stdio;
that is on by default (it can be void main(){

turned off)

int[] DynamicallyAllocatedArray = int[10];

o This means that we don’t have to (T . DynamicallyAlTocatedArray)l
explicitly delete memory that we writeln(i);
have allocated. }
In the example on the right, we b
dynamically allocate an array of
10 integers

Then I use a ‘foreach’ loop to Inike:1$ rdmd memory.d
display them all.

The garbage collector will
periodically run, and remove any
memory that cannot be reached

for us.

OCOO0OO0ODODOOOOOoO

D does allow us to use
pointers as shown on line 7
We can use the ‘&’ operator
to get the address of a

variable.
o Observe the address printed
out below.

'std.stdio;

1d main(){

int myInt;
int* pointerTolnteger = &mylnt;

writeln(&mylInt);
writeln(pointerTolnteger);

}
"memory2.d" 15L, 162B written

mike:1$ rdmd memory2.d
7FFF617BEB70
7FFF617BEB70

D pays extra attention to memory
safety.

You can add an @safe attribute after a
function, and this will ensure that
memory safety bugs are avoided.
@system is the ‘default’ however -- so
observe on line 9 we can manipulate

(@)

memory.

m While this is the default,

m try changing @system to @safe
on line 9, you’ll see the compiler
give you an error that this is not
verified to be safe code.

: std.stdio;

void Safe(

ring

, g
writeln(strings);

}

void UnSafe()
{

int* p =

p=p+
}

void main(){
Safe();
UnSafe();

system

29

DLang: Many other small nuances improved

e Covered earlier, but D fixes many defaults that C++ inherited from C

e Initialization of values
o (But use ‘=void’ if you don’t want to initialize for performance reasons)

e And several other small quirks --
o int* Xx,y;
o int* x,vy;
o More
m https://dlang.org/blog/the-d-and-c-series/
m https://dlang.org/articles/cpptod.html

30

https://dlang.org/blog/the-d-and-c-series/
https://dlang.org/articles/cpptod.html

Sales Pitch 2 - Performance

Where does Performance come from in DLang? (1/2)

[t is a compiled language
o (i.e. machine code is executed as

opposed to interpreting code)
o The compilers (DMD, LDC2, GDC)

have years of optimization built into

them
The language allows you to
control system resources

o 1l.e.You can turn on and off garbage
collection for example.

Parallelization can often be
trivially enabled

std.parallelism;
std.stdio;
std.range;
std.array;

id main(){

‘0 data = iota(50, ,1).array;

elem += 1;

reach(result ; data){
writeln(result);

std.parallelism library allows you to simply
make a ‘parallel’ call on a range to enable
data-parallelism

32

We saw this example previously
-- but it’s important!
D does lots of compile-time

function evaluation (CTFE)
o Run code at compile-time, so you
don’t need to evaluate at run-time
o While it may cost us as ‘developers’
time to compute at compile-time, the
end-user pays ‘0’ time, as the value is
already known

The meta-programming and
mixins are one of D’s
superpowers for enabling
performance.

Sort an Array at Compile-Time v

your code here

void main()

import std.algorithm, std.stdio;
"Starting program".writeln;
enum a = [3, 1, 2, 4, 0];

static immutable b = sort(a);

pragma(msg, "Finished compilation: ", b);

oid main(){

std.algorithm;

enum values = [7,12,15,17,14];
enum result = values.sort;

(,result);

Sales Pitch 3 - Productive

Three Things for Productivity

1. Built-in types
a. I'll call them dynamic arrays (really just a pointer and a size)
b. Associative arrays
2. ‘rdmd’ for otherwise building fast
a. Regular ‘dmd’ compiler is otherwise fast.
3. Uniform Function Call Syntax
a. Read-left toright
b. Combined with ‘Ranges’ this becomes particularly more powerful
4. Ability to interface trivially with C code
a. Briefly discuss ‘importC’
b. Briefly discuss ‘betterC’ which is a mode that disables the D runtime

35

Lesson - Associative Arrays

i.e. Dictionaries

36

Associative Arrays (and sneak peak at alias)

std.stdio;

e Associative Arrays
o a.k.adictionaries, hashmaps, hash tables
o array
o Note: In c++ this is a std::map or more
specifically std::unordered_map

D is as simple as Python in regard to
‘dynamic arrays, dictionaries’
https://tour.dlang.org/tour/en/basics [EEEEEES-ESTE

19 alias value = string;
arraS 20 value[key] animals;

animals|[]
animals|[]

/oid main(){

NOOsEWNE-

tring[int] students;

students[1=
writeln(students);

=
WN O WO

1
1
1
1

mike:1$ rdmd associative array.d if dog
[12345: "mike"] if(Write{'n(anlmals){
dog is here o)

["dog":"an animal that barks", "cat":"an animal that meows"]@:° writeln(animals);

https://tour.dlang.org/tour/en/basics/arrays
https://tour.dlang.org/tour/en/basics/arrays

| want to pause for a moment and show you a little bit
more -- action!

That is -- | want to show you just how fast you can get
started in the D language as we go through our
introduction.

rdmd is a tool that will make you think you're working
in Python -- with the power of a Systems language!

rdmd

Description

rdmd is a companion to the dmd compiler that simplifies the typical edit-compile-link-run or edit-make-run
cycle to a rapid edit-run cycle. Like make and other tools, rdmd uses the relative dates of the files involved to
minimize the amount of work necessary. Unlike make, rdmd tracks dependencies and freshness without re-
quiring additional information from the user.

rdmd introduction

e Now I'm going to re-run
the hello.d program
again

o This time with a ‘shortcut’,
the rdmd
This allows me to speed up
my edit-compile-run cycle
m rdmd is a smart tool
to help us iterate

more quickly when
writing D code

e Note: You can also use:

o dmd -run hello.d
o ldc2 -run hello.d

std.stdio;

void main(){

writeln(

std.stdio.writeln(

mike:1$ |rdmd hello.d
Hello Everyone!
elcome to class!

rdmd scripts

std.stdio;

d main(){
e You can check out more here: writeln(

https://dlang.org/rdmd.html

o Having the rdmd tool allows us
to essentially use the D compiler g '
like a scripting language ike:1$ chmod a+x script.d

. ike:1$./script.d
= Seeexample to the right ['m a fast compiled language used

like a scripting

Description

rdmd is a companion to the dmd compiler that simplifies the typical edit-compile-link-run or edit-make-run
cycle to a rapid edit-run cycle. Like make and other tools, rdmd uses the relative dates of the files involved to
minimize the amount of work necessary. Unlike make, rdmd tracks dependencies and freshness without re-
quiring additional information from the user.

https://dlang.org/rdmd.html

Lesson - Uniform Function Call Syntax
(UFCS)

Uniform Function Call Syntax and Chaining (1/2)

std.stdio;

e Allows you to call free functions Ste ELapF e

with the 7 syntax
o e.g.
m func(param)) is called as
m param.func.
o dtour -
uniform-function-call-syntax-ufcs

e Article by Walter Bright

o [archived link]

void main(){

OOV E WN =

auto functionCall = map!(a=> a*2)([1,2,3]);
writeln(functionCall);

O 00

(©]

b2 oulk

auto ufcs = [1,2,3].map! (a=> a*2);
writeln(ufcs);

ike:1$ rdmd ufcs.d
[2, 4, 6]
[2, 4, 6]

https://tour.dlang.org/tour/en/gems/uniform-function-call-syntax-ufcs
https://tour.dlang.org/tour/en/gems/uniform-function-call-syntax-ufcs
https://web.archive.org/web/20121218051921/https://www.drdobbs.com/cpp/uniform-function-call-syntax/232700394

e UFCS allows you to std.stdio;

std.string;

more conveniently void main(){
chain together function string sentence =

calls

o Here’s an example of

chaining together several ,
calls writeln(sentence.strip.toUpper.replace(

writeln(strip(replace(toUpper(sentenée),

Note: It can be useful to ritatn (Sentence, Strin

.toUpper

space out the calls. replace(

.strip
)i
}
mike:1$ rdmd chaining.d
joe WAS HERE
joe WAS HERE

joe WAS HERE

Teaching D

Exponential Gains in Teaching

e Now the trick with this talk, is that where I’ve really seen the most
exponential improvement is in my teaching
e Iseem to be better able to prep students with a language that’s a bit

more clean

o 2x better teaching with D
o That’s a pretty good (and exponential) result (and remember, and exponential
function)

45

Exponential Gains in Teaching - How? (1/2)
Intro to DUB

pacat LIS IR R e L A

‘ , L] L] L]
] dub].S the bllllt - ln p aCkage DUB is the official package manager for the D programming language, providing
o simple and configurable cross-platform builds. DUB is well integrated in various
man age I' and blll].d SYSte m IDEs and can also generate configuration for third party build systems and IDEs.
® H aV]. ng a p acl<age man ager / Use the DUB registry website to discover packages and publish your own.

build system is just necessary fhechicanbesedio

¢ download programs and dependencies (dub fetch, dub upgrade)

o (I do show students how to compile « create projects (dubinit, dub add)
on the Command-line however!) » compile projects and external programs (dub build, dub run)

® (YeS, I learned abOut * test projects (dub test)
Greenspun’s rule recently) Google greenspuns 10t e

All Images Videos News Shortvideos Shopping Forums i More

Greenspun's tenth rule of programming is an aphorism in computer
programming and especially programming language circles that states:
Any sufficiently complicated C or Fortran program contains an ad hoc,
informally-specified, bug-ridden, slow implementation of half of
Common Lisp.

. Wikipedia
https://en.wikipedia.org » wiki » Greenspun's_tenth_rule }

e o | DI LONCTTIN, WITEY PPN T § | [PIRsT |

Exponential Gains in Teaching - How? (2/2)

1 e k€ ,
2 teaching;
Modules instead of header 4 std.stdio;
° d d 8 std.algorithm;
files is a big when for both - St rahge:
1teration, and management. 7 _
. o 8 void main(){
Multiple paradigms 9
o Igettotalk about things like 10 //L :
concurrency, QOP -- speciﬁcally g i‘grtt*Hrw?uniﬁersi:[m;ml')ei; length; i++){
message pgssmg, fuI}Ctlonal 13 nur;lbers [ii=numbers [i]+. : '
programming, generic 14}
programming, etc. 15 writeln(numbers);
unit testing built-in -
o Should show unit tests for doing 8
test-driven development :
m (note: Tests can be annotated [N gk b Mt
with ‘pure’) 20 [iota(l,4,1).map! o 1 .writeln;
And much more! 21 §
23 pure {
24 assert(l==1,)i
25

Courses where I changed languages to use D

e Spring 2023

o Software Engineering, C++ -->D
e Fall 2024

o Building Game Engines, C++ -->D
e Spring 2025

o Real-Time Computer Graphics, C++ -->D
e Fall 2025

o (Tentatively)

o Computer Systems, C --> A mix of C and D

m (D has the ‘importC’ compiler which you can use as a C compiler)

e Note:

o Most courses that have a final project I allow students to choose their language
o Almost all choose D (otherwise some choose C++)

48

How Generally Students Respond?

Generally most students are open to

learning a new language
o Some are disappointed to not be learning C++ in
my graphics/games courses initially
o Most by the end of the semester report being

happy.)
e Almost all students who previously used ey riae 1 an, e mo
C++ previously reported enjoying using and ' : Audience: Everyonel
collaborating on group projects in D more
than C++.
e Even better -- you can hear directly the
students perspective nks |
e D Conf 2023: '

o YouTube:
https://www.youtube.com/live/wXTlafzlJVY?si=X | : ‘ ,QS{lOn 3?
/

A Semester at University: Teaching Softwae. |
Engineering in DLang

g

py6gbh4AwtlUrt2E&t=7711
o Link to Conference Talk Description:
https://dconf.org/2023/index.html

https://www.youtube.com/live/wXTlafzlJVY?si=Xpy6g5h4wtIUrt2E&t=7711
https://www.youtube.com/live/wXTlafzlJVY?si=Xpy6g5h4wtIUrt2E&t=7711
https://dconf.org/2023/index.html

How Teaching Assistants Responded

e The first term a language gets changed, there is an ‘extra degree’ of
difficulty
o 1l.e. Teaching Assistants may not use D.
e In the case of D however, from C++, the transition is quite

manageable.

o Cases where support is needed, is to help with ecosystem and tooling, to help
prepare teaching assistants

50

YouTube

e If you’re going to do
something new --
with teaching, you
have to support it.

I am actively adding

more lessons about

the D programming

language

o 129 lessons and

counting
(Installation,
tooling, debuggers,
language features)

https:/www.youtub
e.com/c/MikeShah

Series Teaser

matrix.py -
matrix.d &

D Language (DLang) ~
Programming

85videos 19,883 views Last updated on Dec 22, 2023

aze -
7

A full playlist on learning the D
Programming language. A great starting
place for beginners to start, as we'll start
from the very beginning. This playlist will
also move towards more advanced
features of the language as well - find it

e
=

(Episode 0] | Serles Teaser
__|imatrix.py

matrix.d §
DLang » 1:00

[Episode o) Serles Teaser

matrix.py
matrix.d

DlLang e 1:00

tepisoce 1] |\ What Is DLang?

DLang r 7116

(Episode 2 DLang Install I

Linux

&

IDND64 D Compiler v2.100.0!

DLang 110\:35

(Episoce 3] DEEANG Install

on Mac (w shown)
&

(>
e N
DlLang po:16
DLang Install
n Windows
A
N z >
DLang p 915
e 5) Hello World
. (Explained)

2

.
p 8

= Sort m Videos Shorts

[Dlang Series Teaser] Dlang versus Python speed comparison (Matrix Multiply)

Mike Shah + 4.7K views * 1 year ago

Dlang versus Python (Matrix Multiply) #shorts series intro

Mike Shah + 2.2K views * 1 year ago

[Dlang Episode 1] The D Programming Language - dlang

Mike Shah * 5.5K views - 1 year ago

[Dlang Episode 2] D Language - setup on Linux (dmd, gdc, and Idc2 shown!)

Mike Shah - 1.8K views * 1 year ago

[Dlang Episode 3] D Language - setup on Mac (Shown on Mac M1, DMD and LDC2)

Mike Shah - 1.1K views * 1 year ago

[Dlang Episode 4] D Language - DMD command line and Visual D for Visual Studio (DMD and
LDC2)

Mike Shah + 1.5K views * 1 year ago

[Dlang Episode 5] The Anatomy of a Hello World Application

Mike Shah + 1.4K views * 1 year ago

https://www.youtube.com/c/MikeShah
https://www.youtube.com/c/MikeShah
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV

I Illinois Computer

Science Summer Thank y0u|

Teaching Workshop
Revisiting the
My 2* Programming Language
Web: mshah.io 15 minutes | Audience: For All!
3 Youlube Www.youtube.com/c/MikeShah 11:00 - 11:15 Tues, June 3rd, 2025

Social: mikeshah.bsky.social
Courses: courses.mshah.io
Talks: http://tinyurl.com/mike-talks

http://mshah.io
http://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks

53

Tuesday, June 3, 2025

Morning Session: Unique Courses

Time Presenter Talk title

09:45 AM Second Day’s Opening Remarks

10:00 AM Invited Talk: Shinkha Singh Teaching at a small liberal-arts college: Takeaways and Challenges

10:30 AM LeeAnn Grant Bridging the Digital Divide: Supporting Computer Science Education in Rural Schools

10:45 AM Rush Sanghrajka Learning to Ride with Al: Teaching Critical Engagement with LLMs in a Data Science Course
11:00 AM Mike Shah Revisiting the D Programming language for Teaching

11:15 AM Casey W. O'Brien Seeing Double: Securing Critical Infrastructure with Digital Twins

11:30 AM Invited Talk: Mariana Silva Turning Data Into Impact: My Experiences with Course Redesign

54

