
1

Revisiting the D Programming Language

My 2x Programming Language

1

Web:     mshah.io      15 minutes | Audience: For All!
 www.youtube.com/c/MikeShah         11:00 - 11:15 Central Time Tues,June 3rd, 2025

Social:  mikeshah.bsky.social      
Courses: courses.mshah.io  
Talks:   http://tinyurl.com/mike-talks 

http://mshah.io
http://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks


Abstract (Which you already read :) )

2

Talk Abstract:  The D programming language (dlang) is a systems programming 
language created by Walter Bright and released in 2001. D has continued to evolve 
during its near 25 year history, and in this talk I will re-introduce the D programming 
language, as someone who has now decided to do significant amount of teaching 
with the language. Why I made the decision to choose this language has to do with 
its ability to scale through the curriculum. The results of my decision have 
surprised even myself with the success! In this talk, I'll discuss what courses I 
experimented with, training TA's to use the language, the student outcomes, how 
students responded, and my thoughts going forward. Audience members will leave 
this talk with lessons about changing the programming language, and hopefully 
with courage to make choices that best benefit student outcomes.



Your Tour Guide for Today
Mike Shah

● Current Role: Teaching Faculty at Yale 
University (Previously Teaching Faculty at Northeastern University)

○ Teach/Research: computer systems, graphics, geometry, 
game engine development, and software engineering.

● Available for: 
○ Contract work in Gaming/Graphics Domains

■ e.g. tool building, plugins, code review
○ Technical training (virtual or onsite) in 

Modern C++, D,  and topics in Performance or 
Graphics APIs

● Fun: 
○ Guitar, running/weights, traveling, video 

games, and cooking are fun to talk to me 
about! 3

Web
www.mshah.io 

https://www.youtube.com/c/MikeShah 
Non-Academic Courses
courses.mshah.io
Conference Talks
http://tinyurl.com/mike-talks 

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks


Slides

4

● Note:
○ Slides will be available for this talk on 

my website: www.mshah.io
○ Just google “Mike Shah Yale” and you’ll 

find them under “Talks”

http://www.mshah.io


Question to Audience

5



Has anyone heard this wisdom before?

6

● “The only reason to switch 
programming languages, is if it gives 
you 10x across a dimension 
[performance/safety/productivity]” - 
paraphrased



Has anyone heard this wisdom before?

7

● “The only reason to switch programming languages, is if it gives 
you 10x across a dimension [performance/safety/productivity]” 
- paraphrased

● I thought I’d share with this crowd, that this wisdom makes me 
laugh 😂

○ (Sometimes even roll on the floor laughing 🤣🤣🤣🤣)



Why am I am laughing 😂 (and dispelling this myth)

8

● We are computer scientists after all -- there’s lots of reasons to 
choose languages, and we don’t need a 10x revolution

● If we can get a 2x across one dimension (with most all things being 
equal), that may be good enough!



Why am I am laughing 😂 (and dispelling bad wisdom)

9

● We are computer scientists after all -- there’s lots of reasons to 
choose languages, and we don’t need a 10x revolution

● If we can get a 2x across one dimension (with most all things being 
equal), that may be good enough!

● 2x easier to write
● 2x faster code generated
● 2x safer code
● 2x better tooling
● 2x community
● 2x more fun
● 2x more ... etc.



Why am I am laughing 😂 (and dispelling bad wisdom)

10

● We are computer scientists after all -- there’s lots of reasons to 
choose languages, and we don’t need a 10x revolution

● Maybe the numbers look something like this in practice

● 5x easier to write
● 1.1x faster code generated
● 4x safer code
● 0.5x better tooling
● 1x community
● 10x more (perceived) fun
● 2x more ... etc.



Exponential Function Reminder: O(2n)

11

● It’s actually not that hard to get an exponential improvement (and 
hit that ‘10x’ mark or more) when you choose the right language for 
yourself on a project or industry project

● So if you can hit a few of these dimensions (2x easier to write, 2x faster 
code generated, 2x safer code, 2x better tooling, 2x community, 2x more fun) while 
most other variables are the same -- why not try something that can 
give you a competitive advantage?

● Note: There’s a wide range of dimensions, so you’ll have to figure it out 
for your use case.

○ 2x easier to hire for, 2x more productive, 2x faster evolving, etc.



Who here has heard of D Language?

12



Lesson - A First Impression
La premiere impression

첫인상

13



Pop Quiz: (l’examen surprise!) (1/3)

14

● Let’s take a look at an 
example of D code

○ I’ll give everyone a 
minute to think about or 
guess what this program 
does

● So... what does this 
program do?



Pop Quiz: (l’examen surprise!) (2/2)

15

● Line 3: 
○ There’s a built-in standard 

library (named ‘Phobos’)
○ There’s a module system .

● Line 5: 
○ Function call using uniform 

function call syntax (UFCS)
● Line 7: 

○ enum constant, evaluated at 
compile-time

● Line 9:
○ immutable static data stored 

in b
● Line 12:

○ pragma outputs value after 
compilation (before runtime) One of the first examples on the www.dlang.org 

webpage - sorting an array -- at compile-time!

http://www.dlang.org


Pop Quiz: (l’examen surprise!) (2/2)

16

● Line 3: 
○ There’s a built-in standard 

library (named ‘Phobos’)
○ There’s a module system .

● Line 5: 
○ Function call using uniform 

function call syntax (UFCS)
● Line 7: 

○ enum constant, evaluated at 
compile-time

● Line 9:
○ immutable static data stored 

in b
● Line 12:

○ pragma outputs value after 
compilation (before runtime) One of the first examples on the www.dlang.org 

webpage - sorting an array -- at compile-time!

http://www.dlang.org


Pop Quiz: (l’examen surprise!) (2/2)

17

● Line 3: 
○ There’s a built-in standard 

library (named ‘Phobos’)
○ There’s a module system .

● Line 5: 
○ Function call using uniform 

function call syntax (UFCS)
● Line 7: 

○ enum constant, evaluated at 
compile-time

● Line 9:
○ immutable static data stored 

in b
● Line 12:

○ pragma outputs value after 
compilation (before runtime) One of the first examples on the www.dlang.org 

webpage - sorting an array -- at compile-time!

http://www.dlang.org


Pop Quiz: (l’examen surprise!) (2/2)

18

● Line 3: 
○ There’s a built-in standard 

library (named ‘Phobos’)
○ There’s a module system .

● Line 5: 
○ Function call using uniform 

function call syntax (UFCS)
● Line 7: 

○ enum constant, evaluated at 
compile-time

● Line 9:
○ immutable static data stored 

in binary
● Line 12:

○ pragma outputs value after 
compilation (before runtime) One of the first examples on the www.dlang.org 

webpage - sorting an array -- at compile-time!

http://www.dlang.org


Pop Quiz: (l’examen surprise!) (2/2)

19

● Line 3: 
○ There’s a built-in standard 

library (named ‘Phobos’)
○ There’s a module system .

● Line 5: 
○ Function call using uniform 

function call syntax (UFCS)
● Line 7: 

○ enum constant, evaluated at 
compile-time

● Line 9:
○ immutable static data stored 

in binary
● Line 12:

○ pragma outputs value after 
compilation (before runtime) One of the first examples on the www.dlang.org 

webpage - sorting an array -- at compile-time!

http://www.dlang.org


Pop Quiz: (l’examen surprise!) (2/2)

20

● Line 7: 
○ This is a fixed-size array.
○ We can slice into it

■ e.g. 
■ a[0 .. 2 ] returns [3,1,2]

○ Arrays (whether dynamic or 
static) know their ‘length’ 
and store the ‘ptr’ together.

One of the first examples on the www.dlang.org 
webpage - sorting an array -- at compile-time!

http://www.dlang.org


Pop Quiz: (l’examen surprise!) (3/3)

21

● One of the first examples on the 
www.dlang.org webpage

○ An example of sorting an array!
○ Line 3: 

■ There’s a built-in standard 
library (named ‘Phobos’)

○ Line 4: 
■ Function call using universal 

function call syntax (UFCS)
○ Line 7: 

■ enum constant
○ Line 8:

■ immutable static data stored 
in b

○ Line 12:
■ pragma outputs value after 

compilation
● This program does most of its 

work (the working) at 
compile-time!

Why you might care to 
look?

● D tries to execute as 
much as possible at 
compile-time

○ And the 
code...just looks 
like regular code!

● Compile-time execution 
saves the user time at 
run-time -- big win!

● https://dlang.org/blog/2017/06/05/compile-time-s
ort-in-d/ 

● https://tour.dlang.org/tour/en/gems/compile-time
-function-evaluation-ctfe 

One of the first examples on the www.dlang.org 
webpage - sorting an array -- at compile-time!

http://www.dlang.org
https://dlang.org/blog/2017/06/05/compile-time-sort-in-d/
https://dlang.org/blog/2017/06/05/compile-time-sort-in-d/
https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe
https://tour.dlang.org/tour/en/gems/compile-time-function-evaluation-ctfe
http://www.dlang.org


Lesson - D Language History
Note: I will refer to D or DLang to mean any version of D version 2.X.X or later

22



D Language Creator - Walter Bright [wiki]

● Famously created the Zortech C++ compiler
○ Also a known game designer creating Empire

● Created a C Compiler (Datalight C compiler)
● Between 1999-2006 worked alone on D 

version 1 (i.e. D1) programming language.
● Around 2006 or 2007 D2 would start being 

developed with Andrei Alexandrescu and 
others.

○ Full history here - Origins of the D Programming 
Language 

■ https://dl.acm.org/doi/pdf/10.1145/3386323 

23
My full interview with Walter Bright 
https://www.youtube.com/watch?v=O8WEykJraQc 

https://en.wikipedia.org/wiki/Walter_Bright
https://www.classicempire.com/
https://dl.acm.org/doi/pdf/10.1145/3386323
https://www.youtube.com/watch?v=O8WEykJraQc


DLang

● DLang has also been evolving and growing since it 
was first created in 2001 [wiki]

● Revisiting D has helped me improve my code in 
other other C style languages -- but now I 
primarily use the D language.

● I hope if you find the same joy as I do, whatever 
language you end up using, you’ll end up improving 
your programming and software engineering skills.

● Today, I want to sell you on trying D Lang for 
teaching -- revisiting a language that has evolved 
for nearly 25 years!

24

https://en.wikipedia.org/wiki/D_(programming_language)


Sales Pitch 1 - Safety

25



The right defaults for safety

● Here are a few examples of the ‘right’ defaults in D I really like:
○ Variables are default initialized

■ (Can use ‘=void’ if you do not want to spend time initializing)
○ Arrays store ‘ptr’ and ‘length’ which means...(see point below)
○ Arrays bounds can be checked by default

■ (You can turn this off to save performance)
○ Memory safety by default (with garbage collector)

■ But you can use any memory allocation strategy as you like
○ const is transitive -- as well as immutable (i.e. a stronger const)
○ Thread local data enabling more concurrent code

■ (You can of course create ‘__gshared’ on variables to create global shared 
memory)

○ Casts -- almost always explicit done -- fewer surprises!
○ ‘structs’ are value types, and ‘classes’ are reference types

■ We’ll cover more on this later.
○ Other safety features

■ Annotations (e.g. @safe, @trusted, @system) means a path for safe code!
○ ABI compatible with C

26



Memory - D is a systems language (1/3)

● D has a garbage collector (gc) 
that is on by default (it can be 
turned off)

○ This means that we don’t have to 
explicitly delete memory that we 
have allocated.

○ In the example on the right, we 
dynamically allocate an array of 
10 integers

○ Then I use a ‘foreach’ loop to 
display them all.

○ The garbage collector will 
periodically run, and remove any 
memory that cannot be reached 
for us.

27



Memory - D is a systems language (2/3)

● D does allow us to use 
pointers as shown on line 7

● We can use the ‘&’ operator 
to get the address of a 
variable.

○ Observe the address printed 
out below.

28



Memory - D is a systems language (3/3)

● D pays extra attention to memory 
safety.

○ You can add an @safe attribute after a 
function, and this will ensure that 
memory safety bugs are avoided.

○ @system is the ‘default’ however -- so 
observe on line 9 we can manipulate 
memory.

■ While this is the default, 
■ try changing @system to @safe 

on line 9, you’ll see the compiler 
give you an error that this is not 
verified to be safe code.

29



DLang: Many other small nuances improved

● Covered earlier, but D fixes many defaults that C++ inherited from C
● Initialization of values

○ (But use ‘=void’ if you don’t want to initialize for performance reasons)
● And several other small quirks -- 

○ int* x,y; // in D produces two pointers to integers
○ int* x,y; // in C produces x as type int* and y as type int.
○ More

■ https://dlang.org/blog/the-d-and-c-series/ 
■ https://dlang.org/articles/cpptod.html 

30

https://dlang.org/blog/the-d-and-c-series/
https://dlang.org/articles/cpptod.html


Sales Pitch 2 - Performance

31



Where does Performance come from in DLang? (1/2)

● It is a compiled language
○ (i.e. machine code is executed as 

opposed to interpreting code)
○ The compilers (DMD, LDC2, GDC) 

have years of optimization built into 
them

● The language allows you to 
control system resources

○ i.e. You can turn on and off garbage 
collection for example.

● Parallelization can often be 
trivially enabled 

32

std.parallelism library allows you to simply 
make a ‘parallel’ call on a range to enable 
data-parallelism



Where does Performance come from in DLang? (2/2)

● We saw this example previously 
-- but it’s important!

● D does lots of compile-time 
function evaluation (CTFE)

○ Run code at compile-time, so you 
don’t need to evaluate at run-time

○ While it may cost us as ‘developers’ 
time to compute at compile-time, the 
end-user pays ‘0’ time, as the value is 
already known

● The meta-programming and 
mixins are one of D’s 
superpowers for enabling 
performance.

33



Sales Pitch 3 - Productive

34



Three Things for Productivity

35

1. Built-in types
a. I’ll call them dynamic arrays (really just a pointer and a size)
b. Associative arrays 

2. ‘rdmd’ for otherwise building fast
a. Regular ‘dmd’ compiler is otherwise fast.

3. Uniform Function Call Syntax
a. Read-left to right
b. Combined with ‘Ranges’ this becomes particularly more powerful

4. Ability to interface trivially with C code
a. Briefly discuss ‘importC’
b. Briefly discuss ‘betterC’ which is a mode that disables the D runtime



Lesson - Associative Arrays
i.e. Dictionaries

36



Associative Arrays (and sneak peak at alias)

● Associative Arrays
○ a.k.a dictionaries, hashmaps, hash tables
○ array
○ Note: In c++ this is a std::map or more 

specifically std::unordered_map 
● D is as simple as Python in regard to 

‘dynamic arrays, dictionaries’
● https://tour.dlang.org/tour/en/basics

/arrays 

37

https://tour.dlang.org/tour/en/basics/arrays
https://tour.dlang.org/tour/en/basics/arrays


rdmd

38

I want to pause for a moment and show you a little bit 
more -- action!

That is -- I want to show you just how fast you can get 
started in the D language as we go through our 
introduction.

rdmd is a tool that will make you think you’re working 
in Python -- with the power of a Systems language!



rdmd introduction

● Now I’m going to re-run 
the hello.d program 
again

○ This time with a ‘shortcut’, 
the rdmd

○ This allows me to speed up 
my edit-compile-run cycle

■ rdmd is a smart tool 
to help us iterate 
more quickly when 
writing D code

● Note: You can also use: 
○ dmd -run hello.d
○ ldc2 -run hello.d 39



rdmd scripts

● You can check out more here: 
https://dlang.org/rdmd.html 

○ Having the rdmd tool allows us 
to essentially use the D compiler 
like a scripting language

■ See example to the right

40

https://dlang.org/rdmd.html


Lesson - Uniform Function Call Syntax 
(UFCS)

41



Uniform Function Call Syntax and Chaining (1/2)

● Allows you to call free functions 
with the ‘.’ syntax

○ e.g. 
■ func(param)) is called as
■ param.func.

○ d tour - 
uniform-function-call-syntax-ufcs

● Article by Walter Bright
○ [archived link]

42

https://tour.dlang.org/tour/en/gems/uniform-function-call-syntax-ufcs
https://tour.dlang.org/tour/en/gems/uniform-function-call-syntax-ufcs
https://web.archive.org/web/20121218051921/https://www.drdobbs.com/cpp/uniform-function-call-syntax/232700394


Uniform Function Call Syntax and Chaining (2/2)

● UFCS allows you to 
more conveniently 
chain together function 
calls

○ Here’s an example of 
chaining together several 
calls

● Note: It can be useful to 
space out the calls.

43



Teaching D

44



Exponential Gains in Teaching

45

● Now the trick with this talk, is that where I’ve really seen the most 
exponential improvement is in my teaching

● I seem to be better able to prep students with a language that’s a bit 
more clean

○ 2x better teaching with D
○ That’s a pretty good (and exponential) result (and remember, and exponential 

function)



Exponential Gains in Teaching - How? (1/2)

46

● ‘dub’ is the built-in package 
manager and build system

● Having a package manager / 
build system is just necessary

○ (I do show students how to compile 
on the command-line however!)

● (Yes, I learned about 
Greenspun’s rule recently)



Exponential Gains in Teaching - How? (2/2)

47

● Modules instead of header 
files is a big when for both 
iteration, and management.

● Multiple paradigms
○ I get to talk about things like 

concurrency, OOP -- specifically 
message passing, functional 
programming, generic 
programming, etc.

● unit testing built-in
○ Should show unit tests for doing 

test-driven development
■ (note: Tests can be annotated 

with ‘pure’)
● And much more!



Courses where I changed languages to use D

48

● Spring 2023
○ Software Engineering, C++ --> D

● Fall 2024
○ Building Game Engines, C++ --> D

● Spring 2025
○ Real-Time Computer Graphics, C++ --> D

● Fall 2025
○ (Tentatively)
○ Computer Systems, C --> A mix of C and D

■ (D has the ‘importC’ compiler which you can use as a C compiler)
● Note:

○ Most courses that have a final project I allow students to choose their language
○ Almost all choose D (otherwise some choose C++)



How Generally Students Respond?

● Generally most students are open to 
learning a new language

○ Some are disappointed to not be learning C++ in 
my graphics/games courses initially

○ Most by the end of the semester report being 
happy.

● Almost all students who previously used 
C++ previously reported enjoying using and 
collaborating on group projects in D more 
than C++.

● Even better -- you can hear directly the 
students perspective

● D Conf 2023: 
○ YouTube: 

https://www.youtube.com/live/wXTlafzlJVY?si=X
py6g5h4wtIUrt2E&t=7711 

○ Link to Conference Talk Description: 
https://dconf.org/2023/index.html

49

https://www.youtube.com/live/wXTlafzlJVY?si=Xpy6g5h4wtIUrt2E&t=7711
https://www.youtube.com/live/wXTlafzlJVY?si=Xpy6g5h4wtIUrt2E&t=7711
https://dconf.org/2023/index.html


How Teaching Assistants Responded

50

● The first term a language gets changed, there is an ‘extra degree’ of 
difficulty

○ i.e. Teaching Assistants may not use D.
● In the case of D however, from C++, the transition is quite 

manageable.
○ Cases where support is needed, is to help with ecosystem and tooling, to help 

prepare teaching assistants 



YouTube

● If you’re going to do 
something new -- 
with teaching, you 
have to support it.

● I am actively adding 
more lessons about 
the D programming 
language

○ 129 lessons and 
counting

○ (Installation, 
tooling, debuggers, 
language features)

○ https://www.youtub
e.com/c/MikeShah 

51
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV 

https://www.youtube.com/c/MikeShah
https://www.youtube.com/c/MikeShah
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9Fso-3cB4CGnSlW0E4btJV


52

Revisiting the D Programming Language

My 2x Programming Language

52

Web:     mshah.io 15 minutes | Audience: For All!
 www.youtube.com/c/MikeShah 11:00 - 11:15 Tues,June 3rd, 2025

Social:  mikeshah.bsky.social      
Courses: courses.mshah.io  
Talks:   http://tinyurl.com/mike-talks 

Thank you!

http://mshah.io
http://www.youtube.com/c/MikeShah
http://courses.mshah.io
http://tinyurl.com/mike-talks


53



54


